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al. Mickiewicra 30,30-059 Krak6w. Poland 

Received 28 June 15’90. in final form 2 January 1991 

Abstraet. Various two-dimensional structures. i.e. Penrose tiling, twins. and random and 
precipitatedstructures, obtained by tiling the plane using Robinson trianglesand decoration 
with two typesof sites have been analysed in five-dimensional hyperspace. Diffraction peak 
intensities for all these structures can be well approximated by the Deby+Waller factor 
calculated in perpendicular (phason) space. Mean-square values of perpendicular-space 
fluctuations scale linearly with the number of sites for all concentrations of small Robinson 
triangles except the Penrose concentration. The slope coefficient exhibits critical behaviour 
at the Penrose concentration, with critical exponent equal to 1. The derived value of the 
criticalexponent for thescalingfactor, describing thescalingofthe peak intensities, isequal 
toO.5. At the Penroseconcentrationthe linear termin themean-squareperpendicularspace 
fluctuation dependence on the number of sites vanishes and, for random Penrose tiling, a 
logarithmic term becomes dominant. significantly changing the dependence of peak inten- 
sities on the number of sites. For all the structures discussed above, analytical expressions 
for peak intensities have been tested. 

1. Introduction 

There are many theoretical conceptsexplainingdiffractionpatterns exhibiting forbidden 
symmetry like those discovered by Shechtman (Shechtman et a1 1984). The first such 
concept had been known even before that famous discovery and was given by Penrose 
(1974), who discovered non-periodic tilings of the plane using only two non-equivalent 
elements. Later de Bruijn (1981) extended this concept and also showed that the con- 
struction could be interpreted as the projection of a five-dimensional lattice structure 
onto a two-dimensional subspace. The projection method was used by Kramer and Neri 
(1984) toconstruct a three-dimensional generalization of the Penrose tiling by projection 
from six dimensions. Another concept is a crystal twinning proposed by Field and 
Fraser (1984)andPauling(1985,1987). Recentlytherandomquasi-crystallinestructures 
obtained by the growth method, i.e. by attaching tiles to an existing seed (Stephens and 
Goldman 1986, Minchau et a1 1987, Nori et a1 1988, Wolny er al1988,1990, Lebech et a1 
1988, Onoda er nl1988, Tang and JariC 1990), or in the thermodynamically equilibrated 
version by the Monte Carlo method (Widom er nl 1987, Strandburg et a1 1989), and 
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molecular dynamics (Lanfon and Billard 1988) have been extensively studied. New 
tilingsof the plane using Robinson triangles have been discussed by Godreche and Luck 
(1989). Theoretical explanations for such structures using transfer matrix calculations 
(Henley 1988, Widom cra11989)havealsobeen presented. Calculationsofthe diffraction 
patterns using the projection method can also be found (JariC 1986, Elser 1985, 1986, 
Henley 1988). 

This paper continues the discussion of similarities of various structures obtained by 
tilingthe plane usingonly two typesofRobinson triangles,andpresentedinourprevious 
papers (Wolny et ai 1988,1990, further called I and 11). Penrose and random Penrose 
structures can be obtained by the inflation method (I and I1 and references therein), 
where each large triangle gives two large triangles and a small one, and each small 
triangle gives one large and one small triangle. Random and precipitatedstructures have 
been obtained by random attachment of Robinson triangles to the existing seed under 
thestrict condition that the planeshould be filledwithout defects. The random structures 
exhibit short-range correlations and are subject to the condition that the concentration 
of the small Robinson triangles is restricted to a very narrow region near the Penrose 
tiling value (cp = l / r 2  = 0.382, I). If the concentration differs much from the Penrose 
concentration, coherent precipitations of microcrystals emerge in the structure. 

Correlation functions and diffraction patternsof all those structures have 10-fold (or 
nearly 10-fold) symmetry and the diffraction patterns consist of well defined peaks. 
Additionally, the diffraction patterns exhibit the same series of peaks as those observed 
for Penrose tiling: however, only for this particular tiling peak do maxima scale with N2 
as in classical crystallography. For twin and precipitated structures, groups of peaks are 
observed instead of single peaks. The peaks in one group overlap for high values of the 
scattering vector, giving maxima at the Penrose positions. For twins, however, in all 
groups single peaks can be resolved if a large enough number of sites is included in the 
cluster, which is never observed for random structures. Using the Penrose structure as 
a reference structure. a universal function describing the dependence of peak intensities 
against In(k) (where k is the scattering vector) has been found, and a linear relation 
between the scaling factor (defined in 11) and the size of the cluster has been obtained. 
The slope coefficient of this linear relation exhibits a singular dependence on the 
concentration of small Robinson triangles, having a singular point at the Penrose con- 
centration. The critical exponent for this dependence was found to be equal to 
0.55 & 0.02. 

In this paper we are using the concept of perpendicular- or phason-space fluctuations 
having an influence on peak intensities calculated at Penrose positions of scattering 
vectors(JariC 1986, Henley 1988,Tangand Jarit 1990). Wecalculated these fluctuations 
for all discussed structures described by different concentration or way of tiling the 
plane (ordered or random). Using a Debye-Waller approximation for phason-space 
fluctuations, we have explained the similarities of the diffraction patterns for those 
structures observed in I and 11. 

J Woiny and L Pytiik 

2. Definition of structures 

As mentioned bcfore, the structures discussed in this paper have been built using 
Robinson triangles (I, 11. Godreche and Orland 1986). For decoration of triangles we 



ZD twins and quasi-crystal fluctuations 2459 

Figure I.Decorationoithe(aj bigand(bjsmal1 R~~insonirian~lesa~rrhiaor!pes~faromr. 
large ones placed 31 !he corners of each Robinson rridnglc~ 2nd smA1 ones ai the centres of 
onlv big triangles. (cj Unsrablccoofigurarion of large atoms. 

used two types of sites (figures l(a) and (b ) ) :  primary (large) ones in the corners of the 
triangles and secondary (small) ones in positions inside the big triangles (one per 
triangle). The bond lengths (Lanson and Billard 1988, Minchau et a[ 1987, Widom et a[ 
1987) are equal to 

where Land S denote large and small sites, respectively, and 5 is the golden mean value 
equal to 1.618. . . , We should note that these two sites do not represent hard discs as 
2dU > du + dss. All the discussed structures, i.e. Penrose-like structures, twin struc- 
tures with different concentrations of small Robinson triangles, and random and pre- 
cipitated structures, decorated in such a way are presented in figures 2(a)-(4. We have 
also performed extra analysis for random Penrose tilings, perfect and random crystals 
and random twins (11). The structure factor was calculated for values of atomic form 
factors equal to 1 for large sites and 0 for small sites, which gives a direct correspondence 
to our previous calculations presented in I and 11. Modification of the form factor for 
the small sites changes the diffraction pattern, but it has no influence on the final results 
of our analysis. 

It was shown that a two-component Lennard-Jones system with bond lengths given 
by (1) in two dimensions spontaneously forms a quasi-crystal (Widom er ali987). In our 
case most of the structures are near their ground states, as the only source of instability 
is a local configuration of four large atoms placed in the corners of a rhombus built up 
by twosmall triangles(figurel(c)). Itcan beseenfromfigurezthat thePenrosestructure 
and also some twin structures are stable. However, many other structures are unstable, 
and the number of unstable local configurations increases with deviation from the 
Penrose tiling concentration. The stability and dynamical properties of our structures 
will be discussed separately. 

3. Five-dimensional representation 

As already shown (JariC 1986, Henley 1988, Tang and JariC 1990) two-dimensional 
quasi-crystals obtained by tiling of the plane by thick and thin rhombuses can be 

dLL = 1 dLS = dLL/P sin(~d5)l  SS = d d r  (1) 
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Figure2. Various types of structure obtained by decoration of Robinson triangles with two 
types of sites: ( a )  Penrose structure, concentration of small Robinson triangles, cp = 0.382; 
(b )  a twin structure (c = 0.5); (c) a random structure (c = 0.37; (d) a precipitated structure 
(c = 0.77). Large sites are placed in the corners of the Robinson triangles. Small sites are 
only centred in the large Robinson triangles. 

successfully described by projection of five-dimensional hypercubic lattice sites onto 
two-dimensional space. The position of any vertex of the tiling is given by five numbers 
{ne} (a = 0, . . . , 4 )  such that 

4 

r = a x nee ,  (2) 
* = O  

where a is a distance between vertices (in our case equal to r )  and 
e, = (cos(2na/5), sin(2na/5)). 

Vectors e, are shown in figure 3. 
Perpendicular-space coordinates are given by 

4 

h(r) = C. n m e r v  (3) 

h,(r)  = X n, (4) 

0=0 

and 
4 

0 = 0  

where 
eYP = (cos(4na/5), sin(4nm/5)). 

Corners of Robinson triangles, which represent the positions of the large sites, can be 
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Figure 3. The SD basis vectors projected onto ZD space are shown around the point 0. The 
position of any big atom can be reached by a sequence of translations given by the basis 
vectors. As shown for point A, sequences of translations are not necessarily unique. If the 
sequence is represented by five numbers (,to, n , ,  n2, n,. nr), showing how many times each 
basis vector has been used, where minus corresponds to a vector in the opposite direction, 
the representations can differ by (1, 1.1,1,1) or its multiplicity, which is equivalent to a 
zero translation. 

described by five numbers even if the choice of {na} is not unique (figure 3) as it is for the 
tiling using thick and thin rhombuses. Parallel- and perpendicular-space components of 
reciprocal vectors are given by (Tang and Jarii: 1990) 

4 
4 n  
5a 

k = - 2 m,e, 

4 
2n 

kz = - 2 m,. 
5 a=o  

From the dependence of phason-space (perp-space) coordinates on real-space co- 
ordinates, the linear terms, called uniform phason strains, can be subtracted by the 
following operation: 

h*(r) = h(r) - a-'Er 

h f ( r )  = h,(r)  - a-'Er 

(8) 

(9) 

where E is a linear phason strain matrix. Existence of uniform phason strain can be 
illustrated by the following example. Figures 4(a) and ( b )  show maps of phason fields 
calculated for a crystalline sample with concentration of small Robinson triangles equal 
to0.5. The uniformphasonstrain observedin figure 4(a) disappearsafter transformation 
given by (8) (see figure 4(b)). The same results can be seen from figures 5(a) and ( b ) ,  
where hodographs of phason fields, calculated before and after reduction of uniform 
phason strain, are presented. After the linear phason strain subtraction, a continuous 
distribution of h = (xarP,y,,,) becomes a two-state distribution of h* shown in figure 

; 

Xb).  
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Figure4. Phasonfields, calculated (a) befareand (b )  afterunifarmphasonstrainsubtraction, 
far a single crystal with equal concentration of small and large atoms. Each arrow placed in 
parallel space indicates length and direction of perp-space coordinate. 

. .  r-lr 

Figure 5. Hadographs of vectors presented in figure 4, (a)  before and ( b )  after uniform 
phason strain snubtraction. 

Figures 6(a)-(d) and 7(a)-(d) show phason fields and their hodographs calculated 
for various structures discussed above. Hodographs from figures 7 ( a ) - ( 4  show in fact 
the window functions used for theoretical calculations of structure factors (Jarit 1986). 
The phason field for Penrose tiling (figure 6(a) )  is uniform in real space (i.e. local mean 
values of h and hZ are constant over the whole structure) and its distribution (figure 7(a ) )  
is hounded and constant in perp-space, which corresponds to constant window function. 
Phason fields for the twin structures (figure 6(b ) )  are completely different. The local 
mean value of phason field increases continuously with distance from the centre. The 
shape of the window function (figure 7 ( b ) )  corresponds in a way to coherently connected 
five blocks. Although the structure consists of five individualcrystals the globaluniform 
phason strain matrix is equal to zero as it is for Penrose tiling. Phason fields for random 
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Figure 6. PhdSOn fieldsof variotrsstructuresshown in figures Z(a)-(d): (0) for Penrose tiling, 
( b )  for twin structure, (c)  for random and (d)  for precipitated structures. 

and precipitated structures (figures 6(c) and ( d ) )  look rather complex; however, Gaus- 
sian approximation of the window function (figure 7(c)) of random structures seems to 
be reasonable. Uniform phason strains for random and precipitated structures are 
negligibly small and they have no inEuence on the results of further calculations. Similar 
phason fields for grown decagonal packing have been presented by Non et al(1988). 

4. Sealing of peak intensities 

We performed calculations of peak intensities along they direction of reciprocal space, 
and the diffraction patterns have already been presented in 1 and 11. In this direction, 
for k, = 0, all observed peaks can be divided into groups of peaks, with positions of 
individual peaks given by 

k ,  = kern ( n = O , 1 , 2  , . . .  ). (10) 
For the first series of peaks ko  = b / [ ( r + 2 )  sin(n/5)] = 2.95 and indices of peaks are 
given by 

fo rn=0  k , = k o  {m~}=(O,l,O,O,-l) and k$"=ko 

for n = 1 k,  = k o r  {mL}= (0,1,1, -1, -1) and kyP = - k o / r  (11) 
fern k , = k o s n  {m",={m",-*+m;-'} and k$"=kO(-r)-".  

From (11) it follows that peak indices for the series of peaks given by (10) are described 
by Fibonacci numbers. Additionally, the sum of indices for a single peak is equal to zero 
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Figure 7. Hodographs of perp-space vectors presented in figure 6 (a )  for Penrose tiling, ( b )  
for twin structure, (c) for random and ( d )  for precipitated structures. 

(Z in, = 0). which, according to (7), gives h, = 0, meaning that the h, component does 
not contribute to peak intensities calculated in they direction. 

As mentioned above (see also I and 11), the diffraction peak intensities for various 
twins, and random and precipitated structures do not scale as @, contrary to single 
crystals and Penrose tiling. One of the most important factors influencing the intensities 
is the Debye-Waller factor. For the phason space this factor depends on the mean- 
square fluctuation of perpendicular-space coordinate h: 

N 

((Ah)’) = L x [h(r,) - (WIZ. (12) 
N I = ,  

Mean-square values of the phason fluctuations are presented in figures 8(a)-(d)). For 
the Penrose tiling, ((Ah)’) is independent of the number of sites. For twins, ((Ah)’) 
increases linearly with N and the slope coefficient is concentration-dependent. Also for 
random and precipitated structures, the linear term is dominant, especially for bigger 
samples when concentration fluctuations are suppressed. The linear behaviour of ( (Ah)2)  
versus Ncan be explained by simple calculations: twin structures consist of several single 
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0 3000 6000 90( 

N 
Figure 8. Mean-square value of perp-space fluctuations versus number of large sites for 
circular samples of ( a )  Penrose tiling; (b) twin structure with c = O S  (U), c = 0.4 (0) and 
c = 0.3846 (A); (c) random slmcture with c = 0.37; and (d) precipitated s ~ ~ u i e  with e = 
0.77 For various twin structures the mean-square value of perp-space fluctuations is linear 
with the slope coefficient depending on the concentration of small Robinson triangles (see 
figure 9). 

crystals and for eachsingle crystal uniform phason strain determines phasoncoordinates. 
It follows that quite generally 

where E, is a linear phason strain matrix, which is constant inside a single grain and 
rotates in a grain boundary, Using a continuous approximation, the mean-square value 
of Ah is given by 

h(r) - E o  * r  (13) 

2 
((Ahm"')') = 2 lEolrZnrdr) (14) 

where IEOl2 = A: + A: and A I ,  A, are eigenvalues of matrix Eo. This gives 

BecauseRZ-NandlEol - /Elso 

which means that for twin structures the mean-square value of phason coordinate is 

((~h-"')2) = & l ~ , 1 * ~ ' .  

((Ah)*) - IE12N (15) 
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Figure 9. The linear coefficient of mean-square value of pcrp-space fluctuations on number 
of sites versus concen!rarion of small Robinson triangles. All the discussed structures (i.e. 
(0) twins with c c cp. (0) twins with c > cp, ( X )  random with c = 0.37 and (V) precipitated 
with c - 0.77) indicate a singular point at Penrose concentration c p  = 382. Full lines cor- 
respond to critical index equal to 1. Inset is the same plot on log-log scale. 

proportional to the number of sites and the square of the uniform phason strain for a 
single grain. This linear dependence on N is in full agreement with our results for twins 
(figure 8(b) )  and can also be used for random and precipitated structures (figures S(c) 
and (d)). The slope coefficients obtained for various concentrations are shown in figure 
9, indicating a singular point at the Penrose concentration of small Robinson triangles 
(cp = I/rZ = 0.382) with critical exponent equal to 1. This value of critical exponent is 
consistent with (15) and the fact that 

(E( - N,’ - (AcC/cp)’” (16) 
where No is the number of large sites in a unit cell of crystalline structures as shown by 
the analysis for the rational approximants of Penrose tiling. 

The Debye-Waller approximation of peak intensity for phason fluctuations in two 
dimensions gives 

I / N Z  = e~p[-0.5(kP~”)~((Ah)~)] .  (17) 
The logarithm of peak intensity normalized to N2 depends linearly on the mean-square 
value of perp-space fluctuations, which is fully supported by figures 10(a)-(d) for all 
structures discussed. It was found (Elser 1985, Jarit 1986) that, for the series of peaks 
described by (lo), the perp-space coordinate of scattering vectors is given by 

k y q  = k r v ( - l / z ) n .  (18) 
Knowing formulae (17) and (18) it seems reasonable to rescale the mean-square value 
of phason fluctuations by a factor of C1, to obtain common behaviour for all peaks 
belonging to the same series of peaks (figures ll(a)-(d)). The behaviour is generally 
linear and does not depend on the way the structures have been obtained. 

For Penrose tiling with various N ,  all the peaks belonging to one series (10) give 
single points lying on a straight line (figure ll(a)). For all the other structures (twins, 
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( b )  

1 

(4 

0.1 

0 4000 8000 0 4000 8000 
N N 

Figure10.Scalingofpeakintensitiescalculatedforaseriesofpealtsgiven b y k .  = Oand k, = 
k,r",where k ,  = 2.95,versusnumberofatomsN (a)forPenrose tiling,(b)fortwinstructure 
(c = 0.5). (c) for raxdom (c-0.37) and ( d )  ior precipitated (c=O.77) structures. Peak 
numbernindicatedasfollows:(O)n = 1 ; ( 0 ) n  =Z;(A)n=3;(V)n=4;(O)n=5:(b) 
n = 6 ; ( + ) n  = 7 ; ( + ) n  = 8 ; ( x ) n  = 9. 

random and precipitated) the peak intensities for various N calculated at Penrose 
positions give points that are placed along the same straight line (figures ll(b)-(d)). 
Finally, we can calculate the scaling factor (k/k,) defined in 11. For twins, random and 
precipitated structures, equations (IS), (16) and (17) give 

ln(I/W') = - C(kpep)2(Ac/cp)N (19) 

where Cis a constant value. As the scaling factor was defined for equal intensities, from 
(19) one obtains 

(20) (kperp ) 2 ((Ahp)') = 2C(kp*)Z(Ac/cp)N 

where kFT is the perp-space component of the scattering vector, which for the Penrose 
tiling corresponds to the same intensity as the one found for a given structure, and 
((Ahp)') is a constant value of mean-square phason fluctuations for Penrose tiling. 
According to (lo), (18) and (20) one gets 

k/kp - (AC/C~)"~N'/' .  (21) 
Knowing that NI/* - R, linear behaviour of scaling factor versus radius of sample is 
obtained. The similarity parameter A defined as the slope coefficient obtained from 
plots of k / k p  versus N'12 is proportional to (Ac/cp)'/*, which gives a critical exponent 
equal to 0.5. The higher value of critical exponent (0.55 ? 0.02) obtained in I1 can be 
explained by the fact that changing to R requires corrections for concentration of 
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Figure 11. Peak intensities of different SiNctures and different positions of kvector, k, = 
0 and k! = knr“. with k, = 2.95 and n = 1. . . . , 9 .  versus mean value of phason-space Rue 
Nations multiplied by a factor f-% (a )  for Penrose tiling, (b)  for twin structure (c = 
0.5). (c) for random (c - 0.37) and (d) for precipitated (c = 0.77) siructures. The full line 
for all figures is the Same and represents equation (U) without any free parameter. Peak 
numbern is: ( O ) n  = 1; (0) n = 2; (A) n = 3; (V) n = 4; (0) n = 5: ( b ) n  = 6; (,$) n = 7; 
(+)n = 8 ; ( x ) n  = 9 .  

sites. This concentration of sites (cs) isasmooth function of c (c, = (1 - c)/(2 - c)) and 
increases slightly the critical exponent obtained from plots of scaling factor versus R .  
Additionally, from (17) and (18) it follows that peak intensities for a series of peaks 
calculated for Penrose tiling are given by 

Prp 2 where const = ( k o  ) ((Ah,)’)/2 = 3.942, and thisequation isan analytical expression 
for the envelope function defined in 11 (see also JariC 1986). 

From the above it follows that for concentrations different from cp the mean-square 
value of phason fluctuations is proportional to N (15) and the intensity scales according 
to (19). For the critical concentration this linear term vanishes and the logarithmic 
term becomes dominant, so the mean-square value of phason fluctuations becomes 
proportional to In(N) (figure 12(a)). However, a small deviation of concentration from 
thecriticalone. like for randomstructures withc 0.37,drasticallychanges thisrelation 
and the linear term becomes dominant (see figures S(c) and 12(b)). In the case of 
logarithmic behaviour of ((Ah)’) versus N ,  peak intensities scale as (Tang and JariC 
1990) 

where 

I / N Z  = exp(-const x r-’”) (22) 

I / N ~  = N - @  (9) 



2, 
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Figure 12. Mean-square value of phason fluctuations versus logarithm of number of large 
sites. Only for the critical concentration of small Robinson triangles (cp). i.e. for random 
Penrose tiling (a), is his dependence linear with phason elasticconstant equal to 9.6. For all 
otherstructures,e.g. forrandomstructure(b)(c = 0.37). thelogarithmictermissuppressed 
by the linear term (see figure 8). 

K and K, are corresponding phason elastic constants. In our case k, = 0 and the second 
term in (24) vanishes. The obtained value of phason elastic constant is K = 9.6. 

5. Conclusions 

Various structures obtained by tiling the plane with Robinson triangles can be described 
by projection from 5D space, although the choice of SD components is not unique. 
All the discussed structures, i.e. Penrose tiling, twins, and random and precipitated 
structures, exhibit quite similar diffraction patterns (I and 11). For any finite structure 
the most intensive peaks are placed at the same positions called Penrose positions. The 
origin of these peaks and their shapes were already discussed in I and 11. 

The intensities of peaks calculated at Penrose positions are well approximated by 
the Debye-Waller factor (17) calculated for phason-space (perp-space) fluctuations. 
We have calculated such fluctuations and shown that they are constant for Penrose tiling 
and linear in number of sites for other structures. The slope coefficient of this relation 
depends linearly on deviation from Penrose concentration, where it exhibits a singular 
point, For the twin structures, the behaviour mentioned above have been theoretically 
explained by the existence of uniform phason strains Cor individual grains of single 
crystals. 

Relation (19) for peak intensities gives linear behaviour of the scaling factor from I1 
on radius of the sample. Additionally, the similarity parameter defined in I1 scales with 
deviations from Penrose concentration, with critical exponent equal to 0.5, if scaling is 
discussed as a function N'!z. In our previous paper (11) this scaling factor was calculated 
as a function of R, which slightly increased the critical exponent to 0.55 2 0.02 because 
of a concentration-dependent correction for N ( R )  dependence. 

The slope coefficient of the linear relation of ((Ah)') versus Nvanishes for the critical 
concentration and the logarithmic term starts to dominate, changing the scaling of the 
peak intensities to that given by (23) and (24) with phason elastic constant K = 9.6. 
Finally, we have checked the validity of the Debye-Waller approximation for phason 
fluctuations of all discussed structures. For the series of peaks given by (10) we have 
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shown that after scaling of mean-square fluctuations by a factor T - ~  (where n = 
0, 1,2, . . . is the peak number in the series) all the logarithms of peak intensities are 
well ap roximated by theoretically derived straight line with slope coefficient equal to 

For Penrose tilingthepeakintensitiesnormaliredto P a n d  mean-square fluctuations 
of phason coordinates are constant, while peak intensities of other structures as well as 
their phason fluctuations depend on number of sites. The results are universal for all the 
structures, and the points are placed along a single straight line, common to all the 
discussed structures. 

-0.5(k,  LP ) 2 . 
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