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Abstract. Various two-dimensional structures, i.e. Penrose tiling, twins, and random and
precipitated structures, obtained by tiling the plane using Robinson triangles and decoration
with two types of sites have been analysed in five-dimensional hyperspace. Diffraction peak
intensities for all these structures can be well approximated by the Debye-Waller factor
calculated in perpendicular (phason) space. Mean-square values of perpendicular-space
fluctuations scale linearly with the number of sites for all concentrations of small Robinson
triangles except the Penrose concentration. The slope coefficient exhibits critical behaviour
at the Penrose concentration, with critical exponent equaf to 1. The derived value of the
critical exponent for the scaling factor, describing the scaling of the peak intensities, is equal
t00.5. At the Penrose concentration the linear term in the mean-square perpendicular space
fluctuation dependence on the number of sites vanishes and, for random Penrose tiling, a
logarithmic term becomes dominant, significantly changing the dependence of peak inten-
sities on the number of sites. For all the structures discussed above, analytical expressions
for peak intensities have been tested.

1. Introduction

There are many theoretical concepts explaining diffraction patterns exhibiting forbidden
symmetry like those discovered by Shechtman (Shechtman et a/ 1984). The first such
concept had been known even before that famous discovery and was given by Penrose
(1974), who discovered non-periodic tilings of the plane using only two non-equivalent
elements. Later de Bruijn (1981) extended this concept and also showed that the con-
struction could be interpreted as the projection of a five-dimensional lattice structure
onto a two-dimensional subspace. The projection method was used by Kramer and Neri
(1984) to construct athree-dimensional generalization of the Penrose tiling by projection
from six dimensions. Another concept is a crystal twinning proposed by Field and
Fraser (1984) and Pauling (1985, 1987). Recently the random quasi-crystalline structures
obtained by the growth method, i.e. by attaching tiles to an existing seed (Stephens and
Goldman 1986, Minchau et af 1987, Nori et @/ 1988, Wolny ef al 1988, 1990, Lebech et al
1988, Onoda er al 1988, Tang and Jari¢ 1990}, or in the thermodynamically equilibrated
version by the Monte Carlo method (Widom et af 1987, Strandburg et a/ 1989), and

0953-8984/91/152457 + 14 $03.50 © 1991 IOP Publishing Ltd 2457



2458 J Wolny and L Pytik

molecular dynamics (Langon and Billard 1988) have been extensively studied. New
tilings of the plane using Robinson triangles have been discussed by Godreche and Luck
(1989). Theoretical explanations for such structures using transfer matrix calculations
{Henley 1988, Widom efal 198%) have also been presented. Calculations of the diffraction
patterns using the projection method can also be found (Jari¢ 1986, Elser 1985, 1986,
Henley 1988).

This paper continues the discussion of similarities of various structures obtained by
tiling the plane using only two types of Robinson triangles, and presented in our previous
papers (Wolny et al 1988, 1990, further called [ and 1I). Penrose and random Penrose
structures can be obtained by the inflation method (I and II and references therein),
where each large triangle gives two large triangles and a small one, and each small
triangle gives one large and one small triangle. Random and precipitated structures have
been obtained by random attachment of Robinson triangles to the existing seed under
the strict condition that the plane should be filled without defects. The random structures
exhibit short-range correlations and are subject to the condition that the concentration
of the small Robinson triangles is restricted to a very narrow region near the Penrose
tiling value {cp = 1/7%2 = 0.382, I). If the concentration differs much from the Penrose
concentration, coherent precipitations of microcrystals emerge in the structure,

Correlation functions and diffraction patterns of all those structures have 10-fold (or
nearly 10-fold) symmetry and the diffraction patterns consist of well defined peaks.
Additionally, the diffraction patterns exhibit the same series of peaks as those observed
for Penrose tiling; however, only for this particular tiling peak do maxima scale with N?
as in classical crystaliography. For twin and precipitated structures, groups of peaks are
observed instead of single peaks. The peaks in one group overlap for high values of the
scattering vector, giving maxima at the Penrose positions. For twins, however, in all
groups single peaks can be resolved if a large enough number of sites is included in the
cluster, which is never observed for random structures. Using the Penrose structure as
areference structure, a universal function describing the dependence of peak intensities
against In(k) (where k is the scattering vector) has been found, and a linear relation
between the scaling factor (defined in II) and the size of the cluster has been obtained.
The slope coefficient of this linear relation exhibits a singular dependence on the
concentration of small Robinson triangles, having a singular point at the Penrose con-
centration. The critical exponent for this dependence was found to be equal to
0.55 £ 0.02. ,

In this paper we are using the concept of perpendicular- or phason-space fluctuations
having an influence on peak intensities calculated at Penrose positions of scattering
vectors (Jarié 1986, Henley 1988, Tang and Jarié¢ 1990). We calculated these fluctuations
for all discussed structures described by different concentration or way of tiling the
plane {ordered or random). Using a Debye-Waller approximation for phason-space
fluctuations. we have explained the similarities of the diffraction patterns for those
structures observed in I and I1.

2. Definition of structures

As mentioned before, the structures discussed in this paper have been built using
Robinson triangles (1, II, Godreche and Orland 1986). For decoration of triangles we
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{a) (b)
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Figure 1. Decoration of the (z) big and (b) small Robinson triangles with two types of atoms:
large ones placed at the corners of each Robinson triangle and small ones at the centres of
only big triangles. (¢} Unstable configuration of large atoms.

used two types of sites (figures 1(a) and (b)): primary (large) ones in the corners of the
triangles and secondary (small) ones in positions inside the big triangles (one per
triangle). The bond lengths (Lancon and Billard 1988, Minchau et o/ 1987, Widom et al
1987) are equal to

dy =1 dis = dyy [[2sin(z/5)] dss = dys/t 1
where L and S denote large and small sites, respectively, and 7 is the golden mean value
equal to 1.618. ... We should note that these two sites do not represent hard discs as

24, ¢ > d + dgg. All the discussed structures, i.e. Penrose-like structures, twin struc-
tures with different concentrations of small Robinson triangles, and random and pre-
cipitated structures, decorated in such a way are presented in figures 2(a)-(d). We have
also performed extra analysis for random Penrose tilings, perfect and random crystals
and random twins (II). The structure factor was calculated for values of atomic form
factors equal to 1 for large sites and 0 for small sites, which gives a direct correspondence
to our previous calculations presented in I and 1. Modification of the form factor for
the small sites changes the diffraction pattern, bat it has no influence on the finai results
of our analysis.

¥t was shown that a two-component Lennard-Jones system with bond lengths given
by (1) in two dimensions spontaneously forms a quasi-crystal (Widom er af 1987). In our
case most of the structures are near their ground states, as the only source of instability
is a local configuration of four large atoms placed in the corners of a rhombus built up
by two small triangles (figure 1(c)). It can be seen from figure 2 that the Penrose structure
and also some twin structures are stable. However, many other structures are unstable,
and the number of unstable local configurations increases with deviation from the
Penrose tiling concentration. The stability and dynamical properties of our structures
will be discussed separately.

3. Five-dimensional representation

As already shown (Jari¢ 1986, Henley 1988, Tang and Jari¢ 1990) two-dimensional
quasi-crystals obtained by tiling of the plane by thick and thin rhombuses can be



2460 J Wolny and L Pytlik

Figure 2. Various types of structure obtained by decoration of Robinson triangles with two
types of sites: (a) Penrose structure, concentration of small Robinson triangles, cp = 0.382;
() a twin structure (¢ = 0.5); (c) a random structure (¢ = 0.37; (d) a precipitated structure
(c=0.77). Large sites are placed in the corners of the Robinson triangles. Small sites are
only centred in the large Robinson triangtes.

successfully described by projection of five-dimensional hypercubic lattice sites onto
two-dimensional space. The position of any vertex of the tiling is given by five numbers
{n}(ax=0,...,4)suchthat

4

r=a 2 nae, 2

=l
where a is a distance between vertices (in our case equal to 7) and
e, = (cos(2rnr/5), sin(2ma/5S)).

Vectors ¢, are shown in figure 3.

Perpendicular-space coordinates are given by
4

h(r)= 2 n. el 3)
a=0
and
4
hir) =2 n, (4)
=0
where

e = (cos(4ma/S), sin(dna/S)).

Corners of Robinson triangles, which represent the positions of the large sites, can be
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Figure 3. The 5D basis vectors projected onto 2D space are shown around the point O. The
position of any big atom can be reached by a seqguence of translations given by the basis
vectors. As shown for point A, sequences of transiations are not necessarily unique. If the
sequence is represented by five numbers (ng, 1y, 12, 223, 14), showing how many times each
basis vector has been used, where minus corresponds to 2 vector in the opposite direction,
the representations can differ by (1, 1, 1, 1, 1} or its multiplicity, which is equivalent to a
zero translation.

described by five numbers even if the choice of {n,} is not unique (figure 3) as it is for the
tiling using thick and thin rhombuses. Parallel- and perpendicular-space components of
reciprocal vectors are given by {Tang and Jarié 1990)

_ 4 é m 5
- 50 = a®a ( )
perp . 3 é porp
k ‘—'—5' _Dmaew (6)
4
L
k=3 2 mq ™

From the dependence of phason-space (perp-space} coordinates on real-space co-
ordinates, the linear terms, called uniform phason strains, ¢an be subtracted by the
following operation:

k*(r) = h(r) — a 'Er 8
h¥(ry=h,(r)—a'Er )]

where E is a linear phason strain matriz. Existence of uniform phason strain can be
illustrated by the following example. Figures 4(a) and (b) show maps of phason fields
calculated for a crystalline sample with concentration of small Robinson triangles equal
t00.5. The uniform phason strain observedin figure 4(a) disappears after transformation
given by (8) (see figure 4(b)). The same results can be seen from figures 5(z) and (b),
where hodographs of phason fields, calculated before and after reduction of uniform
phason strain, are presented. After the linear phason strain subtraction, a continuous
distribution of & = (Xper, Yoerp) becomes a two-state distribution of k* shown in figure
5(b).
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Figured. Phason fields, calculated (@) before and (b) after uniform phason strain subtraction,
for a single crystal with equal concentration of small and large atoms. Each arrow placed in
parallel space indicates length and direction of perp-space coordinate.
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Figure 5. Hodographs of vectors presented in figure 4, (a) before and (b) after uniform
phason strain subtraction.

Figures 6(a)-(d) and 7(a)—(d) show phason fields and their hodographs calculated
for various structures discussed above. Hodographs from figures 7(a)-(d) show in fact
the window functions used for theoretical calculations of structure factors (Jari¢ 1986).
The phason field for Penrose tiling (figure 6(a)) is uniform in real space (i.e. local mean
values of k and k% are constant over the whole structure) and its distribution (figure 7(a))
is bounded and constant in perp-space, which corresponds to constant window function.
Phason fields for the twin structures (figure 6(b)) are completely different. The local
mean value of phason field increases continuously with distance from the centre. The
shape of the window function (figure 7(b)) corresponds in a way to coherently connected
five blocks. Although the structure consists of five individual crystals the global uniform
phason strain matrix is equal to zero as it is for Penrose tiling. Phason fields for random
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Figure 6. Phason fields of various structures shown in figures 2(a)-{d): (a) for Penrose tiling,
(b) for twin structure, (¢) for random and (d) for precipitated structures.

and precipitated structures (figures 6(c) and (&)) look rather complex; however, Gaus-
stan approximation of the window function (figure 7(c)) of random structures seems to
be reasonable. Uniform phason strains for random and precipitated structures are
negligibly small and they have no influence on the results of further calculations. Similar
phason fields for grown decagonal packing have been presented by Nori er al (1988).

4, Scaling of peak intensities

We performed calculations of peak intensities along the y direction of reciprocal space,
and the diffraction patterns have already been presented in I and II. In this direction,
for k, = 0, all observed peaks can be divided into groups of peaks, with positions of
individual peaks given by

ky =kot" (n=0,1,2,...). (10)

For the first series of peaks ko = 221/[(7 +2) sin(/5)] = 2.95 and indices of peaks are
given by

for n= 0 ky = kU {mg’}= (07 1’070, _-1) and k?l}l‘p :ko
forn=1 k,=kot {mi}=(0,1,1,—-1,-1) and kFP=—ky/T (11)
forn ky=kot® {mi}={mi?+mi '} and KPP =ky(=7)"

From (11) it follows that peak indices for the series of peaks given by (10) are described
by Fibonacci numbers. Additionally, the sum of indices for a single peak is equal to zero
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Figure 7. Hodographs of perp-space vectors presented in figure 6: (a) for Penrose tiling, (b)
for twin structure, (¢) for random and (d) for precipitated structures.

(2 m, = 0), which, according to (7), gives 4, = 0, meaning that the h, component does
not contribute to peak intensities calculated in the y direction.

As mentioned above (see also I and II), the diffraction peak intensities for various
twins, and random and precipitated structures do not scale as N?, contrary to single
crystals and Penrose tiling. One of the most important factors influencing the intensities
is the Debye—Waller factor. For the phason space this factor depends on the mean-
square fluctuation of perpendicular-space coordinate h:

N

(8 = £ 2 [h(r) = (12)

i=1

Mean-square values of the phason fluctuations are presented in figures 8(a)—(d)). For
the Penrose tiling, ((Ah)?) is independent of the number of sites. For twins, {((A%)?)
increases linearly with ¥ and the slope coefficient is concentration-dependent. Also for
random and precipitated structures, the linear term is dominant, especially for bigger
samples when concentration fluctuations are suppressed. The linear behaviour of ((A#)?%)
versus N can be explained by simple calculations: twin structures consist of several single
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Figure 8. Mean-square value of perp-space fluctuations versus number of large sites for
circular samples of: (&) Penrose tiling; (b) twin structure with ¢ = 0.5 (00), ¢ = 0.4 (O) and
¢ = 0.3846 (A }; (¢} random structure with ¢ = 0.37; and {d) precipitated structure with ¢ =
0.77. For various twin structures the mean-square value of perp-space fluctuations is linear
with the slope coefficient depending on the concentration of small Robinson triangles (see
figure 9).

crystals and for eachsingle crystal uniform phason strain determines phason coordinates.
It follows that quite generally

R(r) ~Ey*r (13)
where E, is a linear phason strain matrix, which is constant inside a single grain and

rotates in a grain boundary. Using a continuous approximation, the mean-square value
of Ah is given by

R R 2
{(AR™™)2) = #L |Eq|2r?2mr dr — (E%L |E0ir2:rrdr) (14)
where |Eqi2 = AT + A} and A4, 4, are eigenvalues of matrix E,. This gives
{(AR™™)?) = {5 |Eo|*R?.
Because R2 ~ N and |Ey| ~ {E|so
{(Ah)*) ~ |E|*N (15)

which means that for twin structures the mean-square value of phason coordinate is
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Figure 9. The linear coefficient of mean-square value of perp-space fluctuations on number
of sites versus concentration of small Robinson triangles. All the discussed structures (i.e.
(O) twins with ¢ < cp, (O twins with ¢ > ¢p, (%) random with ¢ = 0,37 and (V) precipitated
with ¢ = 0.77) indicate a singular point at Penrose concentration ¢p = 382, Full lines cor-
respond to critical index equal to 1. Inset is the same plot on log-log scale,

proportional to the number of sites and the square of the uniform phason strain for a
single grain. This linear dependence on N is in full agreement with our results for twins
(figure 8(b)) and can also be used for random and precipitated structures (figures 8(c)
and (d)). The slope coefficients obtained for various concentrations are shown in figure
9, indicating a singular point at the Penrose concentration of small Robinson triangles
(cp = 1/7? = 0.382) with critical exponent equal to 1. This value of critical exponent is
consistent with (15) and the fact that

|E| ~ N§! ~ (Acfcp) (16)

where N, is the number of large sites in a unit cell of crystalline structures as shown by
the anatysis for the rational approximants of Penrose tiling.

The Debye—Waller approximation of peak intensity for phason fluctuations in two
dimensions gives

I/N? = exp| ~0.5(kP)2((AR)2)]. (17)

The logarithm of peak intensity normalized to N? depends linearly on the mean-square
value of perp-space fluctuations, which is fully supported by figures 10(a)-(d) for all
structures discussed. It was found (Elser 1985, Jari¢ 1986) that, for the series of peaks
described by (10), the perp-space coordinate of scattering vectors is given by

kper® = kperP(—1/T)", (18)

Knowing formulae (17) and (18) il seems reasonable to rescale the mean-square value
of phason fluctuations by a factor of 772" to obtain common behaviour for all peaks
belonging to the same series of peaks (figures 11(a@)-(d)). The behaviour is generally
linear and does not depend on the way the siructures have been obtained,

For Penrose tiling with various N, all the peaks belonging to one series (10) give
single points lying on a straight line (figure 11{2)). For all the other structures (twins,
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Figure 10. Scaling of peak intensities calculated for a series of peaks given by &, = 0and k, =
kor", where k= 2.95, versus number of atoms N: () for Penrose tiling, (&) for twinstructure
{¢=0.5), (c) for rundom {c = 0.37) and (d) for precipitated (¢ = 0.77) structures. Peak
number » indicated as follows: () n = L, {O)n =2, {AYn = (V)n =& () n = 3; (%)
n=6(X)n=T,(+)n=8(x)n=9

random and precipitated) the peak intensities for various N calculated at Penrose
positions give points that are placed along the same straight line (figures 11(b)—(d)).
Finally, we can calculate the scaling factor (k/ky)} defined in II. For twins, random and
precipitated structures, equations (15), (16) and (17) give

In(1/N?) = — C(kP*®}?(Ac/cp)N (19)

where Cis aconstant value. As the scaling factor was defined for equal intensities, from
(19) one obtains

(kBT )2 {(Akp)?) = 2C(k™P)2(Ac/cp)N (20

where k5 T is the perp-space component of the scattering vector, which for the Penrose
tiling corresponds to the same intensity as the one found for a given structure, and
{(Ahp)*) is a constant value of mean-square phason fluctuations for Penrose tiling.
According to (10), (18) and (20) one gets

kikp ~ (Acfcp) PNY2, (21)

Knowing that N%2 ~ R, linear behaviour of scaling factor versus radius of sample is
obtained. The similarity parameter A defined as the slope coefficient obtained from
plots of k/kp versus N¥2 is proportional to (Ac/cp)?, which gives a critical exponent
equal to 0.5. The higher value of critical exponent (.55 = 0.02) obtained in II can be
explained by the fact that changing N2 R requires corrections for concentration of



2463 J Wolny and L Pytlik

l_fr_l_l

T —T
1.0 E (o} LN -i. a_
N i J
L S ]
AS
[ = ]
£ 1 E
i .
1 T
. )
2 -
>
X w ]
1 fa) 1 1 L . 57 1
—2n !0 m !
(AR frer (Ah Pty
Figure 11. Peak intensities of different structures and different positions of & vector, &, =
Oand k, = kot”, with k¢ = 2.95and n =1, .. ., 9, versus mean value of phason-space fluc-

tuations multiplied by a factor r-*: {a) for Penrose tiling, (#) for twin structure {c =
0.5). (¢) for random (c = 0.37) and (d) for precipitated (¢ = 0.77) structures. The full line
for all figures is the same and represents equation (22) without any free parameter. Peak
aumbernis: (Mr=1{O1a=2,{A)n=3(Vn=4,(Gn=5(FIn=6{f)n=17,
(+yr=8,(X}n=9.

sites. This concentration of sites (cs) is a smooth function of ¢ (¢5 = (1 — ¢)/(2 — ¢)) and
increases slightly the critical exponent obtained from plots of scaling factor versus R.
Additionally, from (17) and (18) it follows that peak intensities for a series of peaks
calculated for Penrose tiling are given by

I/N? = exp(—const X 772") (22)

where const = (ki )2{(Ahp)?)/2 = 3.942, and this equation is an analytical cxpression

for the envelope function defined in I (see also Jari¢ 1986).

From the above it follows that for concentrations different from cp the mean-square
value of phason fluctuations is proportional to N (15) and the intensity scales according
to (19). For the critical concentration this linear term vanishes and the logarithmic
term becomes dominant, so the mean-square vaive of phason fluctuations becomes
proportional to In(N) (figure 12(a)). However, a small deviation of concentration from
the critical one, like for random structures with ¢ = 0.37, drastically changes this relation
and the linear term becomes dominant (see figures 8(c) and 12(b)). In the case of
logarithmic behaviour of ((A#)? versus N, peak intensities scale as (Tang and Jarié
1990)

I/N? = N~"2 (23)
where

1 1
= — | fperpi2 2
1= g 1+ ] (24)
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Figure 12. Mean-square value of phason fluctuations versus logarithm of number of large
sites. Only for the critical concentration of small Robinson triangles (cg). i.e. for random
Penrose tiling (a), is this dependence linear with phason elastic constant equal to 9.6, For all
other structures, e.g. for randem structure (b) (¢ = 0.37), the logarithmic term is suppressed
by the linear term (see figure &).

k and k, are corresponding phason elastic constants. In cur case &, = 0 and the second
term in (24) vanishes. The obtained value of phason elastic constant is Kk = 9.6.

5. Conclusions

Various structures obtained by tiling the plane with Robinson triangles can be deseribed
by projection from 5D space, although the choice of sD components is not unique.
All the discussed structures, i.e. Penrose tiling, twins, and random and precipitated
structures, exhibit quite similar diffraction patterns (I and II). For any finite structure
the most intensive peaks are placed at the same positions called Penrose positions. The
origin of these peaks and their shapes were already discussed in I and I1.

The intensities of peaks calculated at Penrose positions are well approximated by
the Debye-Waller factor (17) calculated for phason-space (perp-space} fiuctuations.
We have calculated such fluctuations and shown that they are constant for Penrose tiling
and linear in number of sites for other structures. The slope coefficient of this relation
depends linearly on deviation from Penrose concentration, where it exhibits a singular
point. For the twin structures, the behaviour mentioned above have been theoretically
explained by the existence of uniform phason strains for individual grains of single
crystals,

Relation (19) for peak intensities gives linear behaviour of the scaling factor from IT
on radius of the sample. Additionally, the similarity parameter defined in II scales with
deviations from Penrose concentration, with critical exponent equal to (.5, if scaling is
discussed as a function N'/2, In our previous paper (II) this scaling factor was calculated
as a function of R, which slightly increased the critical exponent to 0.55 % 0.02 because
of a concentration-dependent correction for N(R) dependence.

The slope coefficient of the linear relation of {{ Ak)?) versus N vanishes for the critical
concentration and the logarithmic term starts to dominate, changing the scaling of the
peak intensities to that given by (23) and (24) with phason elastic constant x = 9.6.
Finally, we have checked the validity of the Debye-Waller approximation for phason
fluctuations of all discussed structures. For the series of peaks given by (10) we have
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shown that after scaling of mean-square fluctuations by a factor 772" (where n =

0,1,2,...is the peak number in the series) all the logarithms of peak intensities are
well approximated by theoretically derived straight line with slope coefficient equal to
"O.S(kg m)z.

For Penrose tiling the peak intensities normalized to N?and mean-square fluctuations
of phason coordinates are constant, while peak intensities of other structures as well as
their phason fluctuations depend on number of sites. The results are universal for all the
structures, and the points are placed aleng a single straight line, common to all the
discussed structures.
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